Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate.
نویسندگان
چکیده
Increasing evidence suggests that glutamate neurotoxicity is partly mediated by reactive oxygen species, formed as a consequence of several processes, including arachidonic acid metabolism and nitric oxide production. Here we used an oxidation-sensitive indicator, dihydrorhodamine 123, in combination with confocal microscopy, to examine the hypothesis that electron transport by neuronal mitochondria may be an important source of glutamate-induced reactive oxygen species (ROS). Exposure to NMDA, but not kainate, ionomycin, or elevated potassium stimulated oxygen radical production in cultured murine cortical neurons, demonstrated by oxidation of nonfluorescent dihydrorhodamine 123 to fluorescent rhodamine 123. Electron paramagnetic resonance spectroscopy studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a radical-trapping agent, also showed production of ROS by cortical neurons after NMDA but not kainate exposure. NMDA-induced ROS production depended on extracellular Ca2+, and was not affected by inhibitors of nitric oxide synthase or arachidonic acid metabolism. The increased production of ROS was blocked by inhibitors of mitochondrial electron transport, rotenone or antimycin, and mimicked by the electron transport uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone. These data support the possibility that NMDA receptor-mediated, Ca(2+)-dependent uncoupling of neuronal mitochondrial electron transport may contribute to the oxidative stress initiated by glutamate exposure.
منابع مشابه
Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (–)-epigallocatechin-3-gallate
Excessive production of Aβ (amyloid β-peptide) has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease). Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species) in neurons through an NMDA (N-methyl-D-aspartate...
متن کاملHumanin rescues cultured rat cortical neurons from NMDA-induced toxicity through the alleviation of mitochondrial dysfunction
N-methyl-D-aspartate (NDMA) receptor-mediated excitotoxicity has been implicated in a variety of pathological situations such as Alzheimer's disease (AD) and Parkinson's disease. However, no effective treatments for the same have been developed so far. Humanin (HN) is a 24-amino acid peptide originally cloned from the brain of patients with AD and it prevents stress-induced cell death in many c...
متن کاملGlutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.
Using the fluorescent dye 2',7'-dichlorodihydrofluorescein (DCF-H2) we investigated the role of glutamate in the production of reactive oxygen species (ROS) in cultured neurons from fetal rat forebrain. The addition of an excitotoxic concentration of glutamate (100 microM) produced a generalized decrease in cellular DCF fluorescence accompanied by local areas of increased fluorescence around th...
متن کاملPreconditioning of cortical neurons by oxygen-glucose deprivation: tolerance induction through abbreviated neurotoxic signaling.
Transient exposure of rat cortical cultures to nonlethal oxygen-glucose deprivation (OGD preconditioning) induces tolerance to otherwise lethal oxygen-glucose deprivation (OGD) or N-methyl-D-aspartate 24 h later. This study evaluates the role of cytosolic and mitochondrial Ca2+-dependent cellular signaling. Mechanistic findings are placed in context with other models of ischemic preconditioning...
متن کاملPreferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production.
Synaptically released Zn2+ can enter and cause injury to postsynaptic neurons. Microfluorimetric studies using the Zn2+-sensitive probe, Newport green, examined levels of [Zn2+]i attained in cultured cortical neurons on exposure to N-methyl-D-asparte, kainate, or high K+ (to activate voltage-sensitive Ca2+ channels) in the presence of 300 microM Zn2+. Indicating particularly high permeability t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 10 شماره
صفحات -
تاریخ انتشار 1995